Обмен веществ как основная функция организма человека. Обмен веществ и энергии Нервная регуляция обмена веществ в организме

В регуляции обмена веществ и энергии выделяют регуляцию об­мена организма веществами и энергией с окружающей средой и регуляцию метаболизма в самом организме.

Регуляция обмена организма с окружающей средой питательными веществами рассматривается в главе 9.

Вопросы регуляции водно-солевого обмена описаны в главе 12. Регуляция обмена организма с окружающей средой теплом, как конечной формой превращения всех видов энергии, обсуждается в главе 11.

Поэтому здесь представлены общие вопросы нейрогуморальной регуляции обмена веществ и энергии в организме и, главным об­разом, регуляция метаболизма целостного организма.

Конечной целью регуляции обмена веществ и энергии является удовлетворение в соответствии с уровнем функциональной актив­ности потребностей целостного организма, его органов, тканей и отдельных клеток в энергии и разнообразных пластических веще­ствах. В целостном организме постоянно существует необходимость согласования общих метаболических потребностей организма с по­требностями клетки органа, ткани. Такое согласование достигается посредством распределения между органами и тканями веществ, поступающих из окружающей среды, и перераспределения между ними веществ, синтезирующихся внутри организма.

Обмен веществ, протекающий внутри организма, не связан пря­мыми способами с окружающей средой. Питательные вещества,

прежде чем они смогут вступить в обменные процессы, должны быть получены из пищи в желудочно-кишечном тракте в молеку­лярной форме. Кислород, необходимый для биологического окисле­ния, должен быть выделен в легких из воздуха, доставлен в кровь, связан с гемоглобином и перенесен кровью к тканям. Скелетные мышцы, являясь в организме одним из мощных потребителей энер­гии, также обслуживают обмен веществ и энергии, обеспечивая по­иск, прием и обработку пищи. Непосредственное отношение к об­мену веществ и энергии имеет выделительная система. Таким об­разом, регуляция обмена веществ и энергии - это мультипарамет-рическая регуляция, включающая в себя регулирующие системы мно­жества функций организма (например, дыхания, кровообращения, выделения, теплообмена и др.).

Роль центра в регуляции обмена веществ и энергии играет гипо­ таламус. Это обусловлено тем, что в гипоталамусе локализованы нервные ядра и центры, имеющие непосредственное отношение к регуляции голода и насыщения, теплообмена, осморегуляции. В гипоталамусе идентифицированы полисенсорные нейроны, реагиру­ющие сдвигами функциональной активности на изменения концент­рации глюкозы, водородных ионов, температуры тела, осмотического давления, т.е. важнейших гомеостатических констант внутренней среды организма. В ядрах гипоталамуса осуществляется анализ со­стояния внутренней среды организма и формируются управляющие сигналы, которые посредством эфферентных систем приспосаблива­ют ход метаболизма к потребностям организма.

В качестве звеньев эфферентной системы регуляции обмена ис­пользуется симпатический и парасимпатический отделы вегетатив­ной нервной системы. Выделяющиеся их нервными окончаниями медиаторы оказывают прямое или опосредованное вторичными по­средниками влияние на функцию и метаболизм тканей. Под управ­ляющим влиянием гипоталамуса находится и используется в каче­стве эфферентной системы регуляции обмена веществ и энергии - эндокринная система. Гормоны гипоталамуса, гипофиза и других эндокринных желез оказывают прямое влияние на рост, размноже­ние, дифференцировку, развитие и другие функции клеток. Гормоны принимают участие в поддержании в крови необходимого уровня таких веществ, как глюкоза, свободные жировые кислоты, мине­ральные ионы (см. главу 5).

Обмен веществ (анаболизм и катаболизм), получение запасаемой в макроэргических связях АТФ энергии, выполнение различных ви­дов работ с использованием метаболической энергии - это, как правило, процессы, протекающие внутри клетки. Поэтому важней­шим эффектором, через который можно оказать регулирующее воз­действие на обмен веществ и энергии, является клетка органов и тканей. Регуляция обмена веществ заключается в воздействии на скорость биохимических реакций, протекающих в клетках.

Наиболее частыми эффектами регуляторных воздействий на клетку являются изменения: каталитической активности ферментов и их концентрации, сродства фермента и субстрата, свойств микросреды,

в которой функционируют ферменты. Регуляция активности фер­ментов может осуществляться различными способами. "Тонкая на­стройка" каталитической активности ферментов достигается посред­ством влияния веществ - модуляторов, которыми часто являются сами метаболиты. Этим способом осуществляется регуляция отдель­ных звеньев метаболических превращений. При этом модулятор может оказывать своей воздействие в отдельной или нескольких тканях организма.

Метаболизм клетки в целом невозможен без интеграции многих биохимических превращений и сама возможность его осуществления определяется энергетическим и окислительно-восстановительным потенциалом клетки. Эта общая интеграция метаболизма обеспечи­вается, главным образом, с помощью аденилатов, участвующих в регуляции любых метаболических превращений клетки.

Интеграция обмена белков, жиров и углеводов клетки осущест­вляется посредством общих для них источников энергии. Действи­тельно, при биосинтезе любых простых и сложных органических слоединений, марокмолекул и надмолекулярных структур в качестве общих источников энергии используется АТФ, которая поставляет энергию для процессов фосфорилирования, или НАД Н, НАДФ Н, поставляющие энергию для восстановления окислительных соедине­ний. Таким образом, если в клетке осуществлять синтез (анаболизм) определенных веществ, то он может происходить за счет затраты химической энергии одного из общих подвижных источников (АТФ, НАД Н, НАДФ-Н), которые образуются при катаболизме других веществ (см.рис.10.1).

За общий энергетический запас клетки, полученный в ходе ката­болизма и являющийся движущей силой разнообразных превраще­ний, конкурируют все анаболические и другие процессы, протека­ющие с затратой энергии. Так, например, осуществление глюкоста-тической функции печени, основанной на способности печени син­тезировать глюкозу из лактата и аминокислот {глюконеогенез), несо­вместимо с одновременным синтезом жиров и белков. Глюконеоге­нез сопровождается расщеплением в печени белков и жиров и окис­лением образующихся при этом жирных кислот, что ведет к осво­бождению энергии, необходимой для синтеза АТФ и НАД Н, в свою очередь требующихся для глюконеогенеза.

Еще одним проявлением интеграции метаболических превращений белков, жиров и углеводов является существование общих предше­ ственников и общих промежуточных продуктов обмена веществ. Это - общий фонд углерода, общий промежуточный продукт обме­на- ацетил- КоА и другие вещества. Важнейшими конечными путями превращений, связующими метаболические процессы на различных этапах, являются цикл лимонной кислоты и реакции дыхательной цепи, протекающие в митохондриях. Так, цикл лимонной кисло­ты - главный источник СО 2 для последующих реакций глюконеоге­неза, синтеза жирных кислот и мочевины.

Одним из механизмов согласования общих метаболических по­требностей организма с потребностями клетки являются нервные и

гормональные влияния на ключевые ферменты. Характерными осо­бенностями этих ферментов являются: положение в начале того метаболического пути, к которому принадлежит фермент; прибли­женность расположения или ассоциированность со своим субстра­том; реагирование не только на действие внутриклеточных регуля­торов метаболизма, но и на внеклеточные нервные и гормональные воздействия.

Примерами ключевых ферментов являются гликогенфосфорилаза, фосфофруктокиназа, липаза. Их роль в процессах регуляции мета­болизма видна, в частности, при подготовке организма к "борьбе или бегству". При повышении в этих условиях в крови уровня адреналина до 10 -9 М он связывается с адренорецепторами плазма­тической мембраны, активирует аденилатциклазу, которая катализи­рует превращение АТФ в циклический АМФ. Последний активирует гликогенфосфорилазу, многократно усиливающую расщепление гли­когена в печени.

Процесс гликогенолиза в мышцах может одновременно активиро­ваться нервной системой и катехоламинами. Этот эффект достига­ется посредством выделения ионов Са ++ , его связывания с кальмо-дулином, являющимся субъединицей фосфорилазы, которая при этом активируется и приводит к мобилизации гликогена. Нервный меха­низм мобилизации гликогена осуществляется через меньшее число промежуточных этапов, чем гормональный. Этим достигается его быстродействие.

Удовлетворение энергетических потребностей организма посред­ством ускорения внутриклеточных процессов расщепления триглице-ридов в жировой клетчатке достигается активацией гормончувстви-тельной липазы. Повышение активности этого фермента (адренали­ном, норадреналином, глюкагоном) приводит к мобилизации сво­бодных жирных кислот, являющихся основным энергетическим суб­стратом окисления в мышцах при выполнении ими интенсивной и длительной работы.

Переход органов и тканей с одного уровня функциональной ак­тивности на другой всегда сопровождается соответствующими изме­нениями их трофики. Например, при рефлекторном сокращении скелетных мышц нервная система осуществляет не только пусковое действие, но и трофическое путем усиления в них местного кро­вотока и интенсивности обмена веществ. Увеличение силы сокра­щений миокарда под влиянием симпатической нервной системы обеспечивается одновременным усилением коронарного кровотока и метаболизма в мышце сердца. О влиянии нервной системы на тро­фику скелетных мышц свидетельствует тот факт, что денервация мышцы приводит к постепенной атрофии мышечных волокон. Важ­нейшее значение в осуществлении трофической функции нервной системы играет ее симпатический отдел. Через симпато-адреналовую систему достигается не только активация обмена веществ и энергии в клетке, но и создаются дополнительные условия для ускорения метаболизма. Норадреналин и адреналин, выброс которых в крово­ток возрастает при возбуждении симпатической нервной системы,

вызывают увеличение глубины дыхания, расширяют мускулатуру бронхов, что способствует доставке кислорода в кровь. Адреналин, оказывая положительное инотропное и хронотропное действие на сердце, увеличивает минутный объем крови, повышает систоличес­кое артериальное давление. В результате активации дыхания и кро­вообращения возрастает доставка кислорода к тканям.

Одним из интегральных показателей внутренней среды, отража­ющим обмен в организме углеводов, белков и жиров, является концентрация в крови глюкозы. Глюкоза является не только энер­гетическим субстратом, необходимым для синтеза жиров и белков, но и источником их синтеза. В печени происходит новообразование углеводов из жирных кислот и аминокислот.

Нормальное функционирование клеток нервной системы, мышц, для которых глюкоза является важнейшим энергосубстратом, воз­можно при условии, что приток к ним глюкозы обеспечит их энер­гетические потребности. Это достигается при содержании в литре крови у человека в среднем 1 г (0,8-1,2 г) глюкозы (рис. 10.3.).

При снижении содержания глюкозы в литре крови до уровня менее 0,5 г, вызванном голоданием, передозировкой инсулина, име­ет место недостаточность снабжения энергией клеток мозга. Нару­шение их функций проявляется учащением сердцебиения, слабостью и тремором мышц, головокружением, усилением потоотделения, ощущением голода. При дальнейшем снижении концентрации глю­козы в крови указанное состояние, именуемое гипогликемией, может перейти в гипогликемическую кому, характеризующуюся угнетением функций мозга вплоть до потери сознания. Введение в кровь глю­козы, прием сахарозы, инъекция глюкагона предупреждают или ос­лабляют эти проявления гипогликемии.

Кратковременное повышение уровня глюкозы в крови {гипергли­кемия) не представляет угрозы для жизни, но может приводить к повышению осмотического давления крови.

В нормальных условиях во всей крови организма содержится около 5 г глюкозы. При среднесуточном потреблении с пищей взрослым человеком, занимающимся физическим трудом, 430 г углеводов в условиях относительного покоя, тканями ежеминутно потребляется около 0,3 г глюкозы. При этом запасов глюкозы в циркулирующей крови достаточно для питания тканей на 3-5 минут и без ее вос­полнения неминуема гипогликемия. Потребление глюкозы возрастает при физической и психоэмоциональной нагрузках. Так как пери­одический (несколько раз в день) прием углеводов с пищей не обеспечивает постоянного и равномерного притока глюкозы из ки­шечника в кровь, в организме существуют механизмы, восполня­ющие убыль глюкозы из крови в количествах, эквивалентных ее потреблению тканями. Механизмы с другой направленностью дей­ствия обеспечивают в нормальных условиях превращение глюкозы в запасаемую форму - гликоген. При уровне более 1,8 г в литре крови происходит выведение ее из организма с мочой.

Избыток глюкозы, всосавшейся из кишечника в кровь воротной вены, поглощается гепатоцитами. При повышении в них концент-

Рис. 10.3 Система регуляции уровня глюкозы в крови (Пояснения в тексте)

рации глюкозы активируется ферменты углеводного обмена печени, превращающие глюкозу в гликоген. В ответ на повышение уровня сахара в крови, протекающей через поджелудочную железу, возрас­тает секреторная активность В -клеток островков Лангерганса. В кровь выделяется большее количество инсулина - единственного гормона, обладающего резким понижающим концентрацию сахара в крови действием. Под влиянием инсулина повышается проница­емость для глюкозы плазматических мембран клеток мышечной жировой тканей. Инсулин активирует в печени и мышцах процессы превращения глюкозы в гликоген, улучшает ее поглощение и усво­ение скелетными, гладкими и сердечной мышцами. Под влиянием инсулина в клетках жировой ткани из глюкозы синтезируются жиры. Одновременно, выделяющийся в больших количествах инсулин тор­мозит распад гликогена печени и глюконеогенез.

Содержание глюкозы в крови оценивается глюкорецепторами пе­реднего гипоталамуса, а также его полисенсорными нейронами. В ответ на повышении уровня глюкозы в крови выше "заданного значения" (>1,2 г/л) повышается активность нейронов гипоталамуса, которые посредством влияния парасимпатической нервной системы на поджелудочную железу усиливают секрецию инсулина.

При понижении уровня глюкозы в крови уменьшается ее погло­щение гепатоцитами. В поджелудочной железе снижается секретор­ная активность В -клеток, уменьшается секреция инсулина. Тормо­зятся процессы превращения глюкозы в гликоген в печени и мыш­цах, уменьшается поглощение и усвоение глюкозы скелетными и гладкими мышцами, жировыми клетками. При участии этих меха­низмов замедляется или предотвращается дальнейшее понижение уровня глюкозы в крови, которое могло бы привести к развитию гипогликемии.

При уменьшении концентрации глюкозы в крови имеет место повышении тонуса симпатической нервной системы. Под ее влия­нием усиливается секреция в мозговом веществе надпочечников адреналина и норадреналина. Адреналин, стимулируя распад глико­гена в печени и мышцах вызывает повышение концентрации сахара в крови. По этому свойству адреналин является наиболее важным антагонистом инсулина среди других гормонов системы регуляции уровня сахара в крови. Например, норадреналин обладает слабовы-раженной способностью повышать уровень глюкозы в крови.

Под влиянием симпатической нервной системы стимулируется выработка а-клетками поджелудочной железы глюкагона, который активирует распад гликогена печени, стимулирует глюконеогенез и приводит к повышению уровня глюкозы в крови.

Понижение в крови концентрации глюкозы, являющейся для ор­ганизма одним из наиболее важных энергетических субстратов, вы­зывает развитие стресса. В ответ на снижение уровня сахара крови глюкорецепторные нейроны гипоталамуса через рилизинг-гормоны стимулируют секрецию гипофизом в кровь гормона роста и адрено-кортикотропного гормона. Под влиянием гормона роста уменьшается проницаемость клеточных мембран для глюкозы, усиливается глю-

конеогенез, активируется секреция глюкагона, в результате чего уровень сахара в крови увеличивается. Гормон роста оказывает анаболические эффекты на обмен белков и жиров. Под его влия­нием увеличивается содержание белка, снижается количество экс-кретируемого азота, увеличивается концентрация в плазме свободных жирных кислот.

Секретируемые под действием адренокортикотропного гормона в коре надпочечников глкжокортикоиды активируют ферменты глюко-неогенеза в печени и этим способствуют увеличению содержания сахара в крови. Одновременно под действием глкжокортикоидов уменьшается включение аминокислот в белки и увеличивается ско­рость выведения из организма азота. Глкжокортикоиды повышают эффективность липолиза в жировой ткани и мобилизации в кровь свободных жирных кислот.

Регуляция обмена веществ и энергии в целостном организме находится под контролем нервной системы и ее высших отделов. Об этом свидетельствуют факты условнорефлекторного изменения ин­тенсивности метаболизма у спортсменов в предстартовом состоянии, у рабочих перед началом выполнения тяжелой физической работы, у водолазов перед их погружением в воду. В этих случаях увели­чивается скорость потребления организмом кислорода, возрастает минутный объем дыхания, минутный объем кровотока, усиливается энергообмен.

Развивающееся при снижении в крови содержания глюкозы, сво­бодных жирных кислот, аминокислот чувство голода обусловливает поведенческую реакцию, направленную на поиск и прием пищи и восполнение в организме питательных веществ.

Обмен веществ и энергии подразумевает комплекс непростых биохимических реакций, разобраться в которых обычному человеку бывает довольно сложно. Данная статья поможет понять, какие процессы происходят в организме с необходимыми соединениями, которые мы потребляем с едой и что влияет на наш метаболизм.

Энергообмен и метаболизм протекают по общей схеме:

  • поступление веществ в организм, его преобразование и абсорбция;
  • применение в организме;
  • выведение или запасание излишков.

Все процессы метаболизма разделяются на 2 типа:

  1. Ассимиляция (пластический обмен, анаболизм) – образование специфичных для организма соединений из поступивших в него веществ.
  2. Диссимиляция – процессы разложения сложных органических соединений до более простых, из которых потом будут образованы новые, особенные вещества. Реакции диссимиляции проходят с высвобождением энергии, поэтому совокупность такого вида процессов называют также энергообменом или катаболизмом.

Данные процессы противоположны друг другу, но тесно связаны между собой. Они протекают непрерывно, обеспечивая нормальную жизнедеятельность. За регуляцию обмена веществ и энергии отвечает нервная система. Главным отделом ЦНС, управляющим всеми типами метаболизма, является гипоталамус.

Основные виды

В зависимости от форм соединений, которые подвергаются трансформации в организме, выделяют несколько видов обмена. Каждый из них имеет свою специфику.

Белки

Белки или пептиды – полимеры, образованные аминокислотами.

Выполняют множество жизненно важных функций:

  • структурная (присутствуют в структуре клеток тканей, составляющих организм человека);
  • ферментативная (ферменты – это белки, участвующие практически во всех биохимических процессах);
  • двигательная (взаимодействие пептидов актина и миозина обеспечивает все движения);
  • энергетическая (разлагаются, высвобождая энергию);
  • защитная (белки – иммуноглобулины участвуют в формировании иммунитета);
  • участвуют в регуляции водно-солевого баланса;
  • транспортная (обеспечивают доставку газов, биологически активных веществ, лекарственных средств и др.).

Попав в организм с продуктами питания, белки распадаются до аминокислот, из которых затем синтезируются новые, свойственные данному организму пептиды. При малом поступлении белков с продуктами питания, 10 из 20 необходимых аминокислот могут вырабатываться организмом, остальные же являются незаменимыми.

Этапы белкового метаболизма:

  • поступление белков с пищей;
  • распад пептидов до аминокислот в ЖКТ;
  • перемещение последних в печень;
  • распределение аминокислот в тканях;
  • биосинтез специфичных пептидов;
  • выведение из организма неиспользованных аминокислот в виде солей.

Жиры

К видам обмена веществ и энергии в организме человека относится и метаболизм жиров. Жиры — соединения глицерина и жирных кислот. Долгое время считалось, что их употребление не обязательно для полноценной работы организма. Однако определенные типы таких веществ содержат значимые противосклеротические составляющие.

Жиры, будучи важным источником энергии, помогают сохранить в организме белки, которые начинают использоваться для ее получения при нехватке углеводов и липидов. Жиры обязательны для усвоения витаминов А, Е, D. Также липиды содержатся в цитоплазме и клеточной стенке.

Биологическая ценность жиров определяется типом жирных кислот, которыми они были образованы. Эти кислоты могут иметь два вида:

  1. Насыщенные, не имеющие в своей структуре двойных связей, считаются наиболее вредными, так как чрезмерное употребление продуктов с большим содержанием данного вида кислот может стать причиной атеросклероза, ожирения и прочих заболеваний. Присутствуют в сливочном масле, сливках, молоке, жирном мясе.
  2. Ненасыщенные - полезные для организма. К ним относятся Омега -3, -6 и -9 кислоты. Способствуют укреплению иммунитета, восстановлению гормонального фона, предупреждают отложение холестерина, улучшают внешний вид кожи, ногтей и волос. Источники подобных соединений - масла разных растений и рыбий жир.

Этапы обмена липидов:

  • поступление жиров в организм;
  • распад в ЖКТ до глицерина и жирных кислот;
  • образование липопротеидов в печени и тонком кишечнике;
  • транспорт липопротеидов в ткани;
  • образование специфических липидов клеток.

Жировые излишки откладываются под кожей или вокруг внутренних органов.

Углеводы

Углеводы или сахара - главный источник энергии в организме.

Процессы обмена углеводов:

  • преобразование углеводов в ЖКТ в простые сахара, которые затем всасываются;
  • превращение глюкозы в гликоген, его накопление в печени и мышцах либо использование для выработки энергии;
  • преобразование гликогена в глюкозу печенью в случае падения уровня сахара в крови;
  • создание глюкозы из неуглеводных компонентов;
  • превращение глюкозы в жирные кислоты;
  • кислородное разложение глюкозы до углекислого газа и воды.

В случае чрезмерного употребления пищи, богатой глюкозой, углевод преобразуется в липиды. Они откладываются под кожей и могут быть использованы для дальнейшей трансформации энергии в клетках.

Значение воды и минеральных солей

Водно-солевой обмен – комплекс процессов поступления, применения и выведения воды и минералов. Большая часть жидкости поступает в организм извне. И также она в малых объемах выделяется в организме в ходе разложения питательных веществ.

Функции воды в организме:

  • структурная (необходимый компонент всех тканей);
  • растворение и транспорт веществ;
  • обеспечение многих биохимических реакций;
  • обязательный компонент биологических жидкостей;
  • обеспечивает постоянство водно-солевого баланса, участвует в терморегуляции.

Из организма жидкость выводится с помощью легких, потовых желез, мочевыделительной системы и кишечника.

Минеральные соли, получаемые с пищей, можно разделить на макро- и микроэлементы. К первым относят минералы, содержащиеся в значительных количествах - магний, кальций, натрий, фосфор и прочие. Микроэлементы нужны организму в очень малом объеме. К ним относятся железо, марганец, цинк, йод и другие элементы.

Нехватка минералов может негативно сказаться на деятельности различных систем организма. Так, при дефиците магния и калия наблюдаются сбои в работе ЦНС, мышц (в том числе и миокарда). Недостаток кальция и фосфора может сказаться на прочности костей, а нехватка йода - на функции щитовидной железы. Нарушения водно-солевого баланса способно стать причиной мочекаменной болезни.

Витамины

Витамины – большая группа простых соединений, необходимых для полноценной работы всех систем организма.

Витамины делятся на 2 группы:

  • водорастворимые (витамины группы В, витамин С и РР), не накапливающиеся в организме;
  • жирорастворимые (А, D, Е), имеющие подобное свойство накопления.

Определенные соединения (витамин В12, фолиевая кислота) вырабатываются кишечной микрофлорой. Многие витамины являются частью различных ферментов, без которых невозможно осуществление биохимических процессов.

Этапы обмена витаминов:

  • поступление с пищей;
  • перемещение к месту накопления или утилизации;
  • преобразование в кофермент (составляющее фермента небелкового происхождения);
  • соединение кофермента и апофермента (белковой части фермента).

При нехватке какого-либо витамина развивается гиповитаминоз, при избытке – гипервитаминоз.

Обмен энергии

Энергетический обмен (катаболизм) – комплекс реакций распада сложных питательных веществ до более простых с выходом энергии, без которой невозможны рост и развитие, движение и другие проявления жизнедеятельности. Полученная энергия накапливается в форме АТФ (универсальный энергетический источник в живых организмах), который содержится во всех клетках.

Количество энергии, высвобождаемой после употребления продукта питания, называется его энергетической ценностью. Измеряется этот показатель в килокалориях (ккал).

Энергообмен проходит в несколько этапов:

  1. Подготовительный. Подразумевает распад сложных питательных веществ в ЖКТ до более простых.
  2. Бескислородное брожение — трансформация глюкозы без участия кислорода. Процесс протекает в цитоплазме клеток. Конечными продуктами этапа являются 2 молекулы АТФ, вода и пировиноградная кислота.
  3. Кислородный или аэробный этап. Проходит в митохондриях (специальных органоидах клеток), при этом пировиноградная кислота распадается с участием кислорода, образуя 36 молекул АТФ.

Терморегуляция

Терморегуляцией называют способность живого организма поддерживать постоянную температуру тела, которая является важным показателем теплового обмена. Чтобы этот показатель был стабильным, должно соблюдаться равенство между теплоотдачей и теплопродукцией.

Теплопродукция -выделение тепла в организме. Его источником служат ткани, в которых протекают реакции с высвобождением энергии. Так, важную роль в терморегуляции играет печень, ведь в ней осуществляется множество биохимических процессов.

Теплоотдача или физическая регуляция может проходить по трем путям:

  • теплопроведение – отдача тепла окружающей среде и предметам, соприкасающимся с кожей;
  • теплоизлучение – отдача тепла воздуху и окружающим предметам путем излучения инфракрасных (тепловых) лучей;
  • испарение – отдача тепла с помощью улетучивания влаги с потом или в процессе дыхания.

Что влияет на процесс метаболизма

Обмен веществ каждого конкретного организма имеет свои особенности. Скорость метаболизма определяется несколькими факторами:

  • половая принадлежность (обычно у мужчин процессы метаболизма протекают несколько быстрее, чем у женщин);
  • генетический фактор;
  • доля мышечной массы (людям, обладающим развитой мускулатурой требуется больше энергии для работы мышц, поэтому происходящие процессы будут протекать быстрее);
  • возраст (с годами скорость обмена веществ снижается);
  • гормональный фон.

Огромное влияние на процесс метаболизма оказывает питание. Здесь важен и рацион, и режим приема пищи. Для правильной работы организма нужно оптимальное количество употребляемых белков, жиров, углеводов, витаминов, минералов и жидкости. Важно помнить, что принимать пищу лучше понемногу, но часто, так как большие перерывы между трапезами способствуют замедлению обмена веществ, а значит, могут привести к ожирению.

В регуляции обмена веществ и энергии выделяют регуляцию об­мена организма веществами и энергией с окружающей средой и регуляцию метаболизма в самом организме.

Регуляция обмена организма с окружающей средой питательными веществами рассматривается в главе 9.

Вопросы регуляции водно-солевого обмена описаны в главе 12. Регуляция обмена организма с окружающей средой теплом, как конечной формой превращения всех видов энергии, обсуждается в главе 11.

Поэтому здесь представлены общие вопросы нейрогуморальной регуляции обмена веществ и энергии в организме и, главным об­разом, регуляция метаболизма целостного организма.

Конечной целью регуляции обмена веществ и энергии является удовлетворение в соответствии с уровнем функциональной актив­ности потребностей целостного организма, его органов, тканей и отдельных клеток в энергии и разнообразных пластических веще­ствах. В целостном организме постоянно существует необходимость согласования общих метаболических потребностей организма с по­требностями клетки органа, ткани. Такое согласование достигается посредством распределения между органами и тканями веществ, поступающих из окружающей среды, и перераспределения между ними веществ, синтезирующихся внутри организма.

Обмен веществ, протекающий внутри организма, не связан пря­мыми способами с окружающей средой. Питательные вещества,


Прежде чем они смогут вступить в обменные процессы, должны быть получены из пищи в желудочно-кишечном тракте в молеку­лярной форме. Кислород, необходимый для биологического окисле­ния, должен быть выделен в легких из воздуха, доставлен в кровь, связан с гемоглобином и перенесен кровью к тканям. Скелетные мышцы, являясь в организме одним из мощных потребителей энер­гии, также обслуживают обмен веществ и энергии, обеспечивая по­иск, прием и обработку пищи. Непосредственное отношение к об­мену веществ и энергии имеет выделительная система. Таким об­разом, регуляция обмена веществ и энергии - это мультипарамет-рическая регуляция, включающая в себя регулирующие системы мно­жества функций организма (например, дыхания, кровообращения, выделения, теплообмена и др.).

Роль центра в регуляции обмена веществ и энергии играет гипо­таламус. Это обусловлено тем, что в гипоталамусе локализованы нервные ядра и центры, имеющие непосредственное отношение к регуляции голода и насыщения, теплообмена, осморегуляции. В гипоталамусе идентифицированы полисенсорные нейроны, реагиру­ющие сдвигами функциональной активности на изменения концент­рации глюкозы, водородных ионов, температуры тела, осмотического давления, т.е. важнейших гомеостатических констант внутренней среды организма. В ядрах гипоталамуса осуществляется анализ со­стояния внутренней среды организма и формируются управляющие сигналы, которые посредством эфферентных систем приспосаблива­ют ход метаболизма к потребностям организма.

В качестве звеньев эфферентной системы регуляции обмена ис­пользуется симпатический и парасимпатический отделы вегетатив­ной нервной системы. Выделяющиеся их нервными окончаниями медиаторы оказывают прямое или опосредованное вторичными по­средниками влияние на функцию и метаболизм тканей. Под управ­ляющим влиянием гипоталамуса находится и используется в каче­стве эфферентной системы регуляции обмена веществ и энергии - эндокринная система. Гормоны гипоталамуса, гипофиза и других эндокринных желез оказывают прямое влияние на рост, размноже­ние, дифференцировку, развитие и другие функции клеток. Гормоны принимают участие в поддержании в крови необходимого уровня таких веществ, как глюкоза, свободные жировые кислоты, мине­ральные ионы (см. главу 5).

Обмен веществ (анаболизм и катаболизм), получение запасаемой в макроэргических связях АТФ энергии, выполнение различных ви­дов работ с использованием метаболической энергии - это, как правило, процессы, протекающие внутри клетки. Поэтому важней­шим эффектором, через который можно оказать регулирующее воз­действие на обмен веществ и энергии, является клетка органов и тканей. Регуляция обмена веществ заключается в воздействии на скорость биохимических реакций, протекающих в клетках.

Наиболее частыми эффектами регуляторных воздействий на клетку являются изменения: каталитической активности ферментов и их концентрации, сродства фермента и субстрата, свойств микросреды,


В которой функционируют ферменты. Регуляция активности фер­ментов может осуществляться различными способами. "Тонкая на­стройка" каталитической активности ферментов достигается посред­ством влияния веществ - модуляторов, которыми часто являются сами метаболиты. Этим способом осуществляется регуляция отдель­ных звеньев метаболических превращений. При этом модулятор может оказывать своей воздействие в отдельной или нескольких тканях организма.

Метаболизм клетки в целом невозможен без интеграции многих биохимических превращений и сама возможность его осуществления определяется энергетическим и окислительно-восстановительным потенциалом клетки. Эта общая интеграция метаболизма обеспечи­вается, главным образом, с помощью аденилатов, участвующих в регуляции любых метаболических превращений клетки.

Интеграция обмена белков, жиров и углеводов клетки осущест­вляется посредством общих для них источников энергии. Действи­тельно, при биосинтезе любых простых и сложных органических слоединений, марокмолекул и надмолекулярных структур в качестве общих источников энергии используется АТФ, которая поставляет энергию для процессов фосфорилирования, или НАД Н, НАДФ Н, поставляющие энергию для восстановления окислительных соедине­ний. Таким образом, если в клетке осуществлять синтез (анаболизм) определенных веществ, то он может происходить за счет затраты химической энергии одного из общих подвижных источников (АТФ, НАД Н, НАДФ-Н), которые образуются при катаболизме других веществ (см.рис.10.1).

За общий энергетический запас клетки, полученный в ходе ката­болизма и являющийся движущей силой разнообразных превраще­ний, конкурируют все анаболические и другие процессы, протека­ющие с затратой энергии. Так, например, осуществление глюкоста-тической функции печени, основанной на способности печени син­тезировать глюкозу из лактата и аминокислот {глюконеогенез), несо­вместимо с одновременным синтезом жиров и белков. Глюконеоге­нез сопровождается расщеплением в печени белков и жиров и окис­лением образующихся при этом жирных кислот, что ведет к осво­бождению энергии, необходимой для синтеза АТФ и НАД Н, в свою очередь требующихся для глюконеогенеза.

Еще одним проявлением интеграции метаболических превращений белков, жиров и углеводов является существование общих предше­ственников и общих промежуточных продуктов обмена веществ. Это - общий фонд углерода, общий промежуточный продукт обме­на- ацетил- КоА и другие вещества. Важнейшими конечными путями превращений, связующими метаболические процессы на различных этапах, являются цикл лимонной кислоты и реакции дыхательной цепи, протекающие в митохондриях. Так, цикл лимонной кисло­ты - главный источник СО 2 для последующих реакций глюконеоге­неза, синтеза жирных кислот и мочевины.

Одним из механизмов согласования общих метаболических по­требностей организма с потребностями клетки являются нервные и


гормональные влияния на ключевые ферменты. Характерными осо­бенностями этих ферментов являются: положение в начале того метаболического пути, к которому принадлежит фермент; прибли­женность расположения или ассоциированность со своим субстра­том; реагирование не только на действие внутриклеточных регуля­торов метаболизма, но и на внеклеточные нервные и гормональные воздействия.

Примерами ключевых ферментов являются гликогенфосфорилаза, фосфофруктокиназа, липаза. Их роль в процессах регуляции мета­болизма видна, в частности, при подготовке организма к "борьбе или бегству". При повышении в этих условиях в крови уровня адреналина до 10 -9 М он связывается с адренорецепторами плазма­тической мембраны, активирует аденилатциклазу, которая катализи­рует превращение АТФ в циклический АМФ. Последний активирует гликогенфосфорилазу, многократно усиливающую расщепление гли­когена в печени.

Процесс гликогенолиза в мышцах может одновременно активиро­ваться нервной системой и катехоламинами. Этот эффект достига­ется посредством выделения ионов Са ++ , его связывания с кальмо-дулином, являющимся субъединицей фосфорилазы, которая при этом активируется и приводит к мобилизации гликогена. Нервный меха­низм мобилизации гликогена осуществляется через меньшее число промежуточных этапов, чем гормональный. Этим достигается его быстродействие.

Удовлетворение энергетических потребностей организма посред­ством ускорения внутриклеточных процессов расщепления триглице-ридов в жировой клетчатке достигается активацией гормончувстви-тельной липазы. Повышение активности этого фермента (адренали­ном, норадреналином, глюкагоном) приводит к мобилизации сво­бодных жирных кислот, являющихся основным энергетическим суб­стратом окисления в мышцах при выполнении ими интенсивной и длительной работы.

Переход органов и тканей с одного уровня функциональной ак­тивности на другой всегда сопровождается соответствующими изме­нениями их трофики. Например, при рефлекторном сокращении скелетных мышц нервная система осуществляет не только пусковое действие, но и трофическое путем усиления в них местного кро­вотока и интенсивности обмена веществ. Увеличение силы сокра­щений миокарда под влиянием симпатической нервной системы обеспечивается одновременным усилением коронарного кровотока и метаболизма в мышце сердца. О влиянии нервной системы на тро­фику скелетных мышц свидетельствует тот факт, что денервация мышцы приводит к постепенной атрофии мышечных волокон. Важ­нейшее значение в осуществлении трофической функции нервной системы играет ее симпатический отдел. Через симпато-адреналовую систему достигается не только активация обмена веществ и энергии в клетке, но и создаются дополнительные условия для ускорения метаболизма. Норадреналин и адреналин, выброс которых в крово­ток возрастает при возбуждении симпатической нервной системы,


Вызывают увеличение глубины дыхания, расширяют мускулатуру бронхов, что способствует доставке кислорода в кровь. Адреналин, оказывая положительное инотропное и хронотропное действие на сердце, увеличивает минутный объем крови, повышает систоличес­кое артериальное давление. В результате активации дыхания и кро­вообращения возрастает доставка кислорода к тканям.

Одним из интегральных показателей внутренней среды, отража­ющим обмен в организме углеводов, белков и жиров, является концентрация в крови глюкозы. Глюкоза является не только энер­гетическим субстратом, необходимым для синтеза жиров и белков, но и источником их синтеза. В печени происходит новообразование углеводов из жирных кислот и аминокислот.

Нормальное функционирование клеток нервной системы, мышц, для которых глюкоза является важнейшим энергосубстратом, воз­можно при условии, что приток к ним глюкозы обеспечит их энер­гетические потребности. Это достигается при содержании в литре крови у человека в среднем 1 г (0,8-1,2 г) глюкозы (рис. 10.3.).

При снижении содержания глюкозы в литре крови до уровня менее 0,5 г, вызванном голоданием, передозировкой инсулина, име­ет место недостаточность снабжения энергией клеток мозга. Нару­шение их функций проявляется учащением сердцебиения, слабостью и тремором мышц, головокружением, усилением потоотделения, ощущением голода. При дальнейшем снижении концентрации глю­козы в крови указанное состояние, именуемое гипогликемией, может перейти в гипогликемическую кому, характеризующуюся угнетением функций мозга вплоть до потери сознания. Введение в кровь глю­козы, прием сахарозы, инъекция глюкагона предупреждают или ос­лабляют эти проявления гипогликемии.

Кратковременное повышение уровня глюкозы в крови {гипергли­кемия) не представляет угрозы для жизни, но может приводить к повышению осмотического давления крови.

В нормальных условиях во всей крови организма содержится около 5 г глюкозы. При среднесуточном потреблении с пищей взрослым человеком, занимающимся физическим трудом, 430 г углеводов в условиях относительного покоя, тканями ежеминутно потребляется около 0,3 г глюкозы. При этом запасов глюкозы в циркулирующей крови достаточно для питания тканей на 3-5 минут и без ее вос­полнения неминуема гипогликемия. Потребление глюкозы возрастает при физической и психоэмоциональной нагрузках. Так как пери­одический (несколько раз в день) прием углеводов с пищей не обеспечивает постоянного и равномерного притока глюкозы из ки­шечника в кровь, в организме существуют механизмы, восполня­ющие убыль глюкозы из крови в количествах, эквивалентных ее потреблению тканями. Механизмы с другой направленностью дей­ствия обеспечивают в нормальных условиях превращение глюкозы в запасаемую форму - гликоген. При уровне более 1,8 г в литре крови происходит выведение ее из организма с мочой.

Избыток глюкозы, всосавшейся из кишечника в кровь воротной вены, поглощается гепатоцитами. При повышении в них концент-


Рис. 10.3 Система регуляции уровня глюкозы в крови (Пояснения в тексте)


Рации глюкозы активируется ферменты углеводного обмена печени, превращающие глюкозу в гликоген. В ответ на повышение уровня сахара в крови, протекающей через поджелудочную железу, возрас­тает секреторная активность В -клеток островков Лангерганса. В кровь выделяется большее количество инсулина - единственного гормона, обладающего резким понижающим концентрацию сахара в крови действием. Под влиянием инсулина повышается проница­емость для глюкозы плазматических мембран клеток мышечной жировой тканей. Инсулин активирует в печени и мышцах процессы превращения глюкозы в гликоген, улучшает ее поглощение и усво­ение скелетными, гладкими и сердечной мышцами. Под влиянием инсулина в клетках жировой ткани из глюкозы синтезируются жиры. Одновременно, выделяющийся в больших количествах инсулин тор­мозит распад гликогена печени и глюконеогенез.

Содержание глюкозы в крови оценивается глюкорецепторами пе­реднего гипоталамуса, а также его полисенсорными нейронами. В ответ на повышении уровня глюкозы в крови выше "заданного значения" (>1,2 г/л) повышается активность нейронов гипоталамуса, которые посредством влияния парасимпатической нервной системы на поджелудочную железу усиливают секрецию инсулина.

При понижении уровня глюкозы в крови уменьшается ее погло­щение гепатоцитами. В поджелудочной железе снижается секретор­ная активность В -клеток, уменьшается секреция инсулина. Тормо­зятся процессы превращения глюкозы в гликоген в печени и мыш­цах, уменьшается поглощение и усвоение глюкозы скелетными и гладкими мышцами, жировыми клетками. При участии этих меха­низмов замедляется или предотвращается дальнейшее понижение уровня глюкозы в крови, которое могло бы привести к развитию гипогликемии.

При уменьшении концентрации глюкозы в крови имеет место повышении тонуса симпатической нервной системы. Под ее влия­нием усиливается секреция в мозговом веществе надпочечников адреналина и норадреналина. Адреналин, стимулируя распад глико­гена в печени и мышцах вызывает повышение концентрации сахара в крови. По этому свойству адреналин является наиболее важным антагонистом инсулина среди других гормонов системы регуляции уровня сахара в крови. Например, норадреналин обладает слабовы-раженной способностью повышать уровень глюкозы в крови.

Под влиянием симпатической нервной системы стимулируется выработка а-клетками поджелудочной железы глюкагона, который активирует распад гликогена печени, стимулирует глюконеогенез и приводит к повышению уровня глюкозы в крови.

Понижение в крови концентрации глюкозы, являющейся для ор­ганизма одним из наиболее важных энергетических субстратов, вы­зывает развитие стресса. В ответ на снижение уровня сахара крови глюкорецепторные нейроны гипоталамуса через рилизинг-гормоны стимулируют секрецию гипофизом в кровь гормона роста и адрено-кортикотропного гормона. Под влиянием гормона роста уменьшается проницаемость клеточных мембран для глюкозы, усиливается глю-


Конеогенез, активируется секреция глюкагона, в результате чего уровень сахара в крови увеличивается. Гормон роста оказывает анаболические эффекты на обмен белков и жиров. Под его влия­нием увеличивается содержание белка, снижается количество экс-кретируемого азота, увеличивается концентрация в плазме свободных жирных кислот.

Секретируемые под действием адренокортикотропного гормона в коре надпочечников глкжокортикоиды активируют ферменты глюко-неогенеза в печени и этим способствуют увеличению содержания сахара в крови. Одновременно под действием глкжокортикоидов уменьшается включение аминокислот в белки и увеличивается ско­рость выведения из организма азота. Глкжокортикоиды повышают эффективность липолиза в жировой ткани и мобилизации в кровь свободных жирных кислот.

Регуляция обмена веществ и энергии в целостном организме находится под контролем нервной системы и ее высших отделов. Об этом свидетельствуют факты условнорефлекторного изменения ин­тенсивности метаболизма у спортсменов в предстартовом состоянии, у рабочих перед началом выполнения тяжелой физической работы, у водолазов перед их погружением в воду. В этих случаях увели­чивается скорость потребления организмом кислорода, возрастает минутный объем дыхания, минутный объем кровотока, усиливается энергообмен.

Развивающееся при снижении в крови содержания глюкозы, сво­бодных жирных кислот, аминокислот чувство голода обусловливает поведенческую реакцию, направленную на поиск и прием пищи и восполнение в организме питательных веществ.

Питание.

Питание человека - это процесс доставки и усвоения питатель­ных веществ в организм для обеспечения его энергетических и пластических потребностей, а также потребностей в воде, витами­нах, минеральных веществах. Кроме этого питание, удовлетворяя одну из основных биологических потребностей организма, должно приносить человеку чувство удовольствия. Формирование у человека культуры питания является одним из основных способов сохранения его здоровья и профилактики многих заболеваний.

Питание человека - это, как правило, компромисс между жела­ниями индивидуума, привычками, рекомендациями и возможностями удовлетворения потребностей в продуктах питания. Среди важней­ших факторов, влияющих на этот компромисс, выделяют представ­ление субъекта о физиологических основах питания и о культуре питания. С другой стороны, питание определяется уровнем и куль­турой производства. Так как эти вопросы освещаются в курсах общей гигиены, гигиены питания, в этой главе рассматриваются лишь общие вопросы физиологии питания.

Удовлетворение пластических и энергетических потребностей ор­ганизма служит критерием для формирования норм питания. В свою


Очередь, нормы питания, определяющие величины потребления пи­щевых веществ, основываются на данных научных исследований обмена жиров, белков, углеводов, воды, минеральных ионов, вита­минов у различных групп населения.

При определении физиологических норм питания с позиций удов­летворения потребностей организма в пластических веществах исхо­дят из того, что большинство из них может синтезироваться в организме. Другие вещества (незаменимые жирные кислоты, незаме­нимые аминокислоты, все минеральные вещества и микроэлементы, витамины) в организме человека не синтезируются и должны посту­пать с пищей. Так, источником аминокислот являются белки пищи, резервом белка или аминокислот организм не располагает. Это обу­славливает необходимость поступления в организм белка из расчета 0,75-1 г на кг массы тела взрослого человека в сутки. При этом 55-60% суточной потребности белка должно обеспечиваться белками животного происхождения (молоко, молочные продукты, яйца, мясо, рыба).

Такие необходимые организму вещества, как витамины К и ви­тамины группы В, аминокислоты, поступают в организм не только с пищей, но и в составе веществ - продуктов жизнедеятельности микрофлоры кишечника.

Соотношение в пищевом рационе белков, жиров и углеводов должно быть 1:1, 2:4,6 по массе этих веществ. В состав пищевого рациона должны входить продукты животного и растительного про­исхождения (например, жиров растительного происхождения должно быть не менее 30% от общего количества жиров), необходимо вклю­чение в пищевые рационы свежих натуральных продуктов питания, являющихся источниками витаминов, ненасыщенных жирных кислот, минеральных ионов.

При небольших отклонениях в течении короткого времени от рекомендуемых соотношений количества жиров и углеводов, при условии поступления в организм белков из расчета 0,75 г/кг/сутки, нарушений метаболизма у человека не происходит. Жиры и углево­ды могут заменять друг друга как энергетические субстраты в со­ответствии с правилом изодинамии. При энергетической ценности 1 г жиров, равной 9,0 ккал, и 1 г углеводов - 4,0 ккал, грамм жиров заменяет при окислении в организме 2,25 г углеводов. Од­нако прием жиров в количестве, превышающем потребность орга­низма, ведет к ожирению и риску сердечно-сосудистых заболева­ний. Поступление жиров в организм в количествах ниже его по­требности ограничивает всасывание жирорастворимых витаминов и может быть причиной развития авитаминозов. Особенно неблаго­приятным для пластических процессов является недостаточное по­ступление в организм незаменимых (линолевой, арахидоновой) жир­ных кислот (см. раздел "Липиды").

Движущей силой обмена веществ в организме и выполнения любых видов работы является энергия катаболических процессов. Ее источником служит энергия химических связей питательных веществ, поступающих с пищей. Поэтому при определении физиологических


Норм питания необходимо соблюдать соответствие энергетической ценности (калорийности) пищевого рациона энергозатратам конкрет­ного организма. Они складываются из затрат энергии основного обмена, энергозатрат, связанных со специфически-динамическим действием пищи и особенностями трудовой деятельности. Взрослое трудоспособное население в возрасте 18-60 лет может быть отне­сено к 5 группам, дифференцированным в зависимости от величин энергозатрат. Для этих групп рассчитаны средние величины энерго­затрат и потребления питательных веществ. Рекомендуемые нормы питания для этих групп приведены в таблице 10.6.

Группа Возраст Энергия, белки, г жиры, углеводы,
ккал всего в т.ч. г г
животные
18-29
Мужчины 30-39
1 группа Работники 40-59
Женщины 18-29 30-39 2400 2300 78 75 88 84 324 310
40-59
18-29
Мужчины 30-39
II группа 40-59
Работники легкого
физического труда 18-29
Женщины 30-39
40-59
18-29
II ГПУППЯ Мужчины 30-39
III группа Работники 40-59
среднего по тяжести физического труда Женщины 18-29 30-39 2700 2600 81 78 45 43
40-59
18-29
Мужчины 30-39
IV группа 40-59
Работники тяжелого
физического труда 18-29
Женщины 30-39
40-59
18-29
Мужчины 30-39
V группа Работники 40-59
особо тяжелого
физического труда Женщины 18-29 30-39 ____ ___ _ ___ __
40-59 - - - - -

Хотя подразделение трудоспособного населения на группы, осно­ванное на особенностях трудовой деятельности, носит во многом условный характер, выделяют группы лиц, занятых преимущественно умственным или физическим трудом. У людей преимущественно умственного труда в процессе этой деятельности развивается свой­ственный данному индивидууму уровень психоэмоционального на­пряжения, гипокинезия, может увеличиваться масса тела. Эти со­стояния являются факторами риска развития многих заболеваний. Для предупреждения подобных осложнений лица, занятые преиму­щественно умственным трудом, должны выполнять разумный объем физической нагрузки и в случае увеличения массы тела умеренно ограничить питание. Ограничение питания должно идти лишь по показателю его энергетической ценности (преимущественно за счет ограничения приема углеводов) и не в ущерб его пластической ценности. Умеренное ограничение питания следует сочетать с вве­дением в пищевой рацион широкого ассортимента продуктов пита­ния растительного происхождения. Входящие в суточный пищевой рацион жиры (80-100 г) должны включать растительные масла (20-25 г). Жиры являются не только энергетическими и пластичес­кими веществами, но и поставщиками таких необходимых организму компонентов, как полиненасыщенные жирные кислоты, фосфолипи-ды, токоферолы, витамины А и Д и др. Для поддержания высокого уровня умственной работоспособности с пищевым рационом в ор­ганизм должны поступать в соответствии с суточной потребностью минеральные ионы, витамины, микроэлементы.

При выполнении преимущественно физического труда в пищевом рационе соотношение белков, жиров и углеводов должно составлять примерно 1:1 3:5,1. Пищевой рацион должен содержать разнообраз­ные калорийные продукты питания, удельный вес животного белка должен составлять в нем 55% от суточной нормы белка, а жиры растительного происхождения 30% от суточной нормы жиров. Чем тяжелее и продолжительнее труд, тем более витаминизированными должны быть пищевые продукты.

Для восстановления здоровья после заболеваний, профилактики заболеваний, сохранения высокой работоспособности разработаны особые режимы и рационы лечебно-профилактического питания. Они при необходимости рекомендуются как лицам физического, так и умственного труда.

Уровни энергетических затрат и потребностей организма в пласти­ческих веществах зависят не только от интенсивности труда, но и от множества других факторов, в частности, от возраста, массы тела, физической активности, функционального состояния организма.

Для беременных и кормящих женщин содержание белка в пищевом рационе должно быть увеличено до 2 г/кг в сутки. Увеличение белка необходимо для обеспечения роста тканей развивающегося организма, а у кормящих женщин для образования молока. Коли­чество белка в рационе детского питания должно составлять 1,2-1,5 г/кг в сутки. Большее количество белка необходимо вводить в рацион питания лицам тяжелого физического труда, у которых


Потери белка больше, чем у лиц, выполняющих более легкую фи­зическую нагрузку. Для скорейшего выздоровления, восстановления массы тканей организма после тяжелых истощающих заболеваний, перенесенных операций, обширных ожогов также требуется пищевой рацион с более высоким (1,5-2,0 г/кг в сутки), чем для здорового, содержанием белка. Общая калорийность пищевого рациона в рас­чете на 1 кг массы тела в сравнении со взрослым выше у растущего детского организма и ниже у стариков (табл. 10.7.).

100 (90)

(54) 100 (90) 20 (18) 400 (360) 60-74 года 2300 (2100) 69 (63) 38 (35) 77 (70) 333 (305) 75 лет 2000 (1900) 60 (57) 33 (31) 67 (63) 290 (275)

При ограниченном поступлении питательных веществ имеет место повышенная утомляемость, снижаются как физическая, так и ум­ственная работоспособность, замедляется рост и развитие детей, уменьшается масса тела, могут появляться отеки (при белковой недостаточности), снижается устойчивость организма к инфекцион­ным заболеваниям. Переедание приводит к развитию дискомфорта в функциях желудочно-кишечного тракта, сонливости, ожирению, снижению физической активности и трудоспособности. Увеличение массы тела и ожирение являются факторами риска сердечно-сосу­дистых заболеваний, сахарного диабета и уменьшения продолжи­тельности жизни.

К важнейшим физиологическим принципам, которые необходимо соблюдать при составлении пищевых рационов, относится режим питания, то есть приспособление характера питания, частоты и периодичности приема пищи к суточным ритмам труда и отдыха, к физиологическим закономерностям деятельности желудочно-кишеч­ного тракта. Принято считать, что наиболее рациональным является четырехразовый прием пищи в одни и те же часы суток. Интервал


Между приемами пищи должен составлять 4-5 часов. Этим дости­гается более равномерная функциональная нагрузка на пищевари­тельный аппарат, что способствует созданию оптимальных условий для полной обработки пищи. Рекомендуется вечерний прием легко­усвояемой пищи не позднее, чем за 3 часа до отхода ко сну.

Общую калорийность суточного пищевого рациона целесообразно" распределять следующим образом: на завтрак - 25%, второй завтрак - 15%, обед - 35%, ужин - 25%. В случае невозможности осу­ществления четырехразового питания оно может быть трехразовым (30% калорий суточного пищевого рациона на завтрак, 45% - на обед, 25% - на ужин).

Опасность для здоровья человека могут представлять вещества, которые содержатся в пищевых продуктах, выращенных или пере­работанных без соблюдения санитарно- гигиенических требований к сельскохозяйственным или промышленным технологиям. Это пести­циды, нитраты, радионуклиды, лекарственные средства, металлы, пищевые добавки, консерванты. При попадании в организм они могут оказывать на ткани токсическое воздействие (металлы, радио­нуклиды), вызывать аллергические реакции (пищевые добавки, кон­серванты, лекарственные вещества). Пестициды могут накапливаться в жировой ткани, и медленно выводясь из организма оказывать длительное токсическое влияние.

Условием для эффективного всасывания и усвоения питательных веществ из желудочно-кишечного тракта является переваривание пи­щевых веществ до мономеров при полостном и пристеночном пище­варении. Часть веществ пищи не подвергается в желудочно-кишечном тракте гидролизу (растительный полисахарид целлюлоза) или расщеп­ляется не полностью. Степень переваривания пищевых веществ зави­сит от их предварительной обработки в процессе приготовления пищи или механической обработки при жевании. Таким образом, пищевые продукты не полностью усваиваются организмом, и при питании смешанной пищей животного и растительного происхождения ее ус­вояемость по калорической ценности составляет около 90-95%.

Неусваиваемыми веществами пищи являются ее грубоволокнистые компоненты (клетчатка, пектины, пищевые волокна). Хотя эти ве­щества снижают калорическую ценность пищевого рациона, они стимулируют перистальтику кишечника, ускоряют продвижение в желудочно-кишечном тракте пищевых масс, способствуют формиро­ванию оптимальной для выведения из организма консистенции ка­ловых масс, способствуют выведению из организма избытка пище­вого холестерина.

Потребность конкретного человека в различных компонентах пищи количестве и соотношениях питательных веществ не только индивидуальны, но и зависят от возраста, выполняемой физической или умственной нагрузки, состояния покоя или психоэмоциональ­ного напряжения. Поэтому определение норм и характера питания, хотя и должно учитывать общие физиологические требования и ре-комендации, может быть лишь строго индивидуализированным.

В регуляции и осуществлении обмена веществ участвуют разные отделы нервной системы. Обмен веществ и энергии, приспосабливающие его к потребностям организма, происходят под влиянием коры полушарий. Так, у тренированных спортсменов на стадионе и в спортивном зале газообмен повышается задолго до начала соревнований. Повышение обмена наблюдается и у болельщиков, несмотря на то что они только зрительно участвуют в происходящем. Ясно, что здесь имеет место рефлекторная регуляция обмена веществ и энергии.

В продолговатом мозге находятся нервные центры, влияющие на обмен белков и углеводов. Вегетативная нервная система непосредственно и через гормоны повышает или понижает обмен веществ в органах. Симпатические импульсы вызывают превращение резервного гликогена печени в глюкозу, а парасимпатические — превращение глюкозы в гликоген. При двигательной деятельности вегетативная нервная система восстанавливает работоспособность мышц, изменяет газообмен и поддерживает температуру тела на определенном уровне.

Гормоны желез внутренней секреции регулируют обмен белков, жиров и углеводов. Гормон поджелудочной железы инсулин стимулирует отложение гликогена в печени и образование жира из углеводов. Гормон надпочечников адреналин в обычных условиях в небольших количествах циркулирует в крови. Мышечная работа или сигналы, предвещающие ее, а также эмоциональное возбуждение вызывают усиленное поступление адреналина в кровь. Как и центральная нервная система, адреналин вызывает возбуждение симпатической нервной системы, и они совместно воздействуют на обмен веществ. В частности, мобилизация гликогена печени для поддержания уровня сахара в крови при мышечной работе осуществляется именно при помощи адреналосимпатической системы.

«Анатомия и физиология человека», М.С.Миловзорова

В состав тела человека входят многие химические элементы. Содержание некоторых химических элементов в теле человека: Элементы, обязательно присутствующие в организме: Кальций Фосфор Калий Сера Хлор Натрий Магний Железо Йод Микроэлементы с незначительным содержанием в теле: Медь Марганец Цинк Фтор Кремний Мышьяк Алюминий Свинец Литий В организме они присутствуют главным образом в виде солей и некоторых кислот….

Химические превращения веществ в организме являются частью сложнейшего процесса, называемого обменом веществ. Из окружающей среды человек получав питательные вещества, воду, минеральные соли и витамины. В окружающую среду он выделяет углекислый газ, некоторое количество влаги, минеральных солей, рганических веществ. В процессе обмена веществ человек получает энергию, аккумулированную в продуктах животного и растительного происхождения, и отдает тепловую энергию…

Из общего обмена веществ 40—50% осуществляется в скелетной мускулатуре. Любая мышечная деятельность увеличивает обмен веществ в мышцах. При спокойном сидении по сравнению со спокойным лежанием он возрастает на 12%. Стояние увеличивает обмен веществ на 20%, а бег — на 400%. Причем хорошо тренированный к данному виду мышечной работы человек тратит на ее выполнении меньше энергии, чем новичок. Объясняется…

Образование и выделение продуктов распада Обмен веществ в организме заканчивается образованием продуктов распада. Они вырабатываются в клетках в результате тканевого обмена. К ним относятся углекислый газ, вода, органические вещества (например, молочная кислота), минеральные вещества — соли, железо и другие металлы. Организм освобождается от них через органы выделения. Помимо конечных продуктов, из организма выводятся выщества, образовавшиеся при разрушении отмирающих…

Выделение продуктов распада является последним этапом обмена белков, жиров и углеводов, очень важным для нормального функционирования и существования организма. Конечные и другие выделяемые продукты и некоторые вещества, введенные с лекарствами, накапливаясь в тканях, могут отравить организм. Через органы выделения они выводятся из организма. Главная функция органов выделения состоит в поддержании относительного постоянства внутренней среды организма,…